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True Risk Minimization

Data

{ξi = (xi, yi)}i∈[N]
∼iid ℙ0

Empirical Risk Minimization

minimize
β∈ℝn

𝔼(x,y)∼ℙN
[ℓβ(x, y)]

minimize
β∈ℝn

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

ℙN :=
1
N ∑

i∈[N]

δξi



Empirical Risk Minimization

3

Empirical Risk Min.

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]𝔼(x,y)∼ℙN
[ℓβ(x, y)]



Empirical Risk Minimization

3

Empirical Risk Min.

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

We tend to underestimate the true risk with 
βERM

𝔼ℙ0[ℓβERM(x, y)] − 𝔼ℙN
[ℓβERM(x, y)]

Overfitting

𝔼(x,y)∼ℙN
[ℓβ(x, y)]



Empirical Risk Minimization

3

Empirical Risk Min.

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

We tend to underestimate the true risk with 


DRO philosophy: statistical error of estimating  via 

βERM

ℙ0 ℙN

𝔼ℙ0[ℓβERM(x, y)] − 𝔼ℙN
[ℓβERM(x, y)]

Overfitting

𝔼(x,y)∼ℙN
[ℓβ(x, y)]



Empirical Risk Minimization

3

Empirical Risk Min.

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

We tend to underestimate the true risk with 


DRO philosophy: statistical error of estimating  via 

βERM

ℙ0 ℙN

𝔼ℙ0[ℓβERM(x, y)] − 𝔼ℙN
[ℓβERM(x, y)]

W(ℙN, ℙ0) > 0

Overfitting

𝔼(x,y)∼ℙN
[ℓβ(x, y)]
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d(ξ, ξ′ ) = ∥x − x′ ∥q + κ ⋅ 1[y ≠ y′ ]
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Metric on the feature-label space Ξ
Distance between  and  isξ = (x, y) ∈ Ξ ξ′ = (x′ , y′ ) ∈ Ξ

d(ξ, ξ′ ) = ∥x − x′ ∥q + κ ⋅ 1[y ≠ y′ ]

Example κ = 28, q = 2

ξ ξ′ 

d(ξ, ξ′ ) = 0.21
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Metric on the feature-label space Ξ
Distance between  and  isξ = (x, y) ∈ Ξ ξ′ = (x′ , y′ ) ∈ Ξ

d(ξ, ξ′ ) = ∥x − x′ ∥q + κ ⋅ 1[y ≠ y′ ]

Example κ = 28, q = 2

ξ ξ′ 

d(ξ, ξ′ ) = 0.70



The Wasserstein Distance

Metric on the feature-label space Ξ

Distance between  and  isξ = (x, y) ∈ Ξ ξ′ = (x′ , y′ ) ∈ Ξ

d(ξ, ξ′ ) = ∥x − x′ ∥q + κ ⋅ 1[y ≠ y′ ]

Wasserstein distance

W(ℚ, ℚ′ ) = inf
Π∈𝒞(ℚ,ℚ′ )

𝔼Π[d(ξ, ξ′ )]

Wasserstein ball

ℙN =
1
N ∑

i∈[N]

δξiℙN

𝔅ε(ℙN) = {ℚ : W(ℙN, ℚ) ≤ ε}

4
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Empirical Risk Min. 𝔼(x,y)∼ℙN
[ℓβ(x, y)]

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

Distributionally RO 𝔼(x,y)∼ℙ0[ℓβ(x, y)]sup
ℚ∈𝔅ε(ℙN)

𝔼(x,y)∼ℚ[ℓβ(x, y)]

Distributionally Robust Optimization



6

Empirical Risk Min. 𝔼(x,y)∼ℙN
[ℓβ(x, y)]

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

Distributionally RO 𝔼(x,y)∼ℙ0[ℓβ(x, y)]sup
ℚ∈𝔅ε(ℙN)

𝔼(x,y)∼ℚ[ℓβ(x, y)]

Distributionally Robust Optimization



Adversarial Attacks

7

Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆



Adversarial Attacks

8

Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆



Adversarial Attacks

8

Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆

ℙ0



Adversarial Attacks

8

Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆

ℙ0

]
]
]

[
[
[

,
,,



Adversarial Attacks

8

Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆

ℙ0

]
]
]

[
[
[

,
,

z1

z2

z3,



Adversarial Attacks
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Access Training Set1
{ξi = (xi, yi)}i∈[N]

Optimize Expected ℓβ2
minimizeβ 𝔼(x,y)∼ℙN

[ℓβ(x, y)]

Deploy/Test Solution3
𝔼(x,y)∼ℙ0[ℓβ⋆(x, y)]

β⋆

ℙ0

Adversarial Attacks
𝔼(x,y)∼ℙ0[ sup

∥z∥p≤α
ℓβ⋆(x + z, y)]

3
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-attack for ℓ2 βERM

βERM⊤x = 34 βERM⊤(x+z) = 1 βERM⊤(x+z) = − 76 βERM⊤(x+z) = − 408

Stronger attack radius α
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-attack for ℓ2 βARO

βARO⊤x = 1.90 βARO⊤(x+z) = 1.80 βARO⊤(x+z) = 1.56 βARO⊤(x+z) = 0.53

Stronger attack radius α
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Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

Distributionally RO 𝔼(x,y)∼ℙ0[ℓβ(x, y)]sup
ℚ∈𝔅ε(ℙN)

𝔼(x,y)∼ℚ[ℓβ(x, y)]

Distributionally Robust Optimization

Adversarially RO 𝔼(x,y)∼ℙN
[ sup

∥z∥p≤α
ℓβ(x + z, y)] 𝔼(x,y)∼ℙ0[ sup

∥z∥p≤α
ℓβ(x + z, y)]

• ARO models overfit despite being “robust”

• Even more severe than overfitting of ERM

• We want DRO and ARO simultaneously

Robust Overfitting
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13

sup
∥z∥p≤α

ℓβ(x + z, y) = sup
∥z∥p≤α

log(1 + exp(−y ⋅ β⊤(x + z)))

Standard RO techniques: Bertsimas et al. (2019)



Adversarial Attacks

sup
∥z∥p≤α

ℓβ(x + z, y) = sup
∥z∥p≤α

log(1 + exp(−y ⋅ β⊤(x + z)))

Monotonicity: supremum goes inside

= log(1 + exp( sup
∥z∥p≤α

{−y ⋅ β⊤(x + z)}))

13



Adversarial Attacks

sup
∥z∥p≤α

ℓβ(x + z, y) = sup
∥z∥p≤α

log(1 + exp(−y ⋅ β⊤(x + z)))

= log(1 + exp( sup
∥z∥p≤α

{−y ⋅ β⊤(x + z)}))

Rewrite: take constants out

= log(1 + exp(−y ⋅ β⊤x+ sup
∥z∥p≤α

{−y ⋅ β⊤z}))

13



Adversarial Attacks

sup
∥z∥p≤α

ℓβ(x + z, y) = sup
∥z∥p≤α

log(1 + exp(−y ⋅ β⊤(x + z)))

= log(1 + exp( sup
∥z∥p≤α

{−y ⋅ β⊤(x + z)}))

Dual norm: use definition
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Adversarial Attacks

sup
∥z∥p≤α

ℓβ(x + z, y) = sup
∥z∥p≤α

log(1 + exp(−y ⋅ β⊤(x + z)))

= log(1 + exp( sup
∥z∥p≤α

{−y ⋅ β⊤(x + z)}))

= log(1 + exp(−y ⋅ β⊤x+ sup
∥z∥p≤α

{−y ⋅ β⊤z}))

= log(1 + exp(−y ⋅ β⊤x+α ⋅ ∥β∥p⋆)) =: ℓα
β (x, y)

Adversarial loss

• Can be interpreted as a new loss function

• Convex and Lipschitz

• Existing Lipschitz Wasserstein DRO theory is applicable

13
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Adversarially Robust Optimization

Adversarially RO 𝔼(x,y)∼ℙ0[ℓα
β (x, y)]𝔼(x,y)∼ℙN

[ℓα
β (x, y)]

Statistical error
 staysW(ℙN, ℙ0)

ARO calibrates 
the loss



14

Empirical Risk Min. 𝔼(x,y)∼ℙN
[ℓβ(x, y)]

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

Distributionally RO 𝔼(x,y)∼ℙ0[ℓβ(x, y)]sup
ℚ∈𝔅ε(ℙN)

𝔼(x,y)∼ℚ[ℓβ(x, y)]

Distributionally & Adversarially Robust Optimization

Adversarially RO

Distributionally &  
Adversarially RO

𝔼(x,y)∼ℙN
[ℓα

β (x, y)] 𝔼(x,y)∼ℙ0[ℓα
β (x, y)]

𝔼(x,y)∼ℙ0[ℓα
β (x, y)]sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y)∼ℚ[ℓα

β (x, y)]



DR-ARO

Exact Convex Reformulation

15

Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y) ∼ℚ[ sup
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{ℓβ(x + z, y)}]
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Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
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β ∈ ℝn, λ ≥ 0, s ∈ ℝN
+ .

Linear obj.



DR-ARO

Exact Convex Reformulation

15

Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]

minimize
β,λ,s

ελ+
1
N

N

∑
i=1

si

subject to ℓα
β (xi, yi) ≤ si ∀i ∈ [N]

ℓα
β (xi,−yi)−λκ ≤ si ∀i ∈ [N]

∥β∥q⋆ ≤ λ

β ∈ ℝn, λ ≥ 0, s ∈ ℝN
+ .  many𝒪(N)
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Exact Convex Reformulation

15

Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]

minimize
β,λ,s

ελ+
1
N

N

∑
i=1

si

subject to ℓα
β (xi, yi) ≤ si ∀i ∈ [N]

ℓα
β (xi,−yi)−λκ ≤ si ∀i ∈ [N]

∥β∥q⋆ ≤ λ

β ∈ ℝn, λ ≥ 0, s ∈ ℝN
+ .

Convex for 
q ∈ {1,2,∞}
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Exact Convex Reformulation
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Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]

minimize
β,λ,s

ελ+
1
N

N

∑
i=1

si

subject to ℓα
β (xi, yi) ≤ si ∀i ∈ [N]

ℓα
β (xi,−yi)−λκ ≤ si ∀i ∈ [N]

∥β∥q⋆ ≤ λ

β ∈ ℝn, λ ≥ 0, s ∈ ℝN
+ .

Exponential 
cone repr.
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Exact Convex Reformulation
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Distributionally and Adversarially Robust Optimization Problem (DR-ARO) 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]

minimize
β,λ,s

ελ+
1
N

N

∑
i=1

si

subject to ℓα
β (xi, yi) ≤ si ∀i ∈ [N]

ℓα
β (xi,−yi)−λκ ≤ si ∀i ∈ [N]

∥β∥q⋆ ≤ λ

β ∈ ℝn, λ ≥ 0, s ∈ ℝN
+ .

• Adversarial loss being 


•   being convex & Lipschitz


• Shafieezadeh-Abadeh (2019)

ℓα
β

ℓα
β
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Distributionally &  
Adversarially RO

𝔼(x,y)∼ℙN
[ℓα

β (x, y)] 𝔼(x,y)∼ℙ0[ℓα
β (x, y)]
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How we address 

Robust Overfitting



16

Empirical Risk Min. 𝔼(x,y)∼ℙN
[ℓβ(x, y)]

Paradigm True RiskTraining Risk

𝔼(x,y)∼ℙ0[ℓβ(x, y)]

Distributionally RO 𝔼(x,y)∼ℙ0[ℓβ(x, y)]sup
ℚ∈𝔅ε(ℙN)

𝔼(x,y)∼ℚ[ℓβ(x, y)]

Distributionally & Adversarially Robust Optimization

Adversarially RO

Distributionally &  
Adversarially RO

𝔼(x,y)∼ℙN
[ℓα

β (x, y)] 𝔼(x,y)∼ℙ0[ℓα
β (x, y)]

𝔼(x,y)∼ℙ0[ℓα
β (x, y)]sup

ℚ∈𝔅ε(ℙN)
𝔼(x,y)∼ℚ[ℓα

β (x, y)]
What other 

approaches?
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N ∑
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δξi

External Data

{ ̂ξ i = ( ̂x i, ̂y i)}i∈[ ̂N ]
∼iid ̂ℙ

̂ℙ N :=
1

̂N ∑
i∈[ ̂N ]

δ ̂ξ i

ℚmix = ωℙN+(1 − ω) ̂ℙ N

ARO with External Data
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β∈ℝn

𝔼(x,y)∼ℚmix
[ℓα

β (x, y)]
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ARO over intersection of Wasserstein balls (Inter-ARO): 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)∩𝔅 ̂ε ( ̂ℙ N)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]
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ARO over intersection of Wasserstein balls (Inter-ARO): 
minimize

β∈ℝn
sup

ℚ∈𝔅ε(ℙN)∩𝔅 ̂ε ( ̂ℙ N)
𝔼(x,y) ∼ℚ[ sup

∥z∥p≤α
{ℓβ(x + z, y)}]

NP-hard even if  and .N = 1 ̂N = 1
1

2
Would admit an exact tractable reformulation if

• Squared-loss function (regression)

• Wasserstein ball around first and second moments

• No attack ( )                            α = 0 Taskesen et al. (2021)
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Tractable Relaxation of Inter-ARO

20

We consult to the adjustable RO literature for a relaxation that is: 


• Convex with  exponential conic constraints


• Coincides with the exact formulation when 


• “Not learning from the external distribution” is always feasible


• Only uses the external data if it improves the objective


• Recovers the presented model from the literature as a special case

𝒪(N ⋅ ̂N )

̂ε → ∞

Static Relaxation Technique



3 Sets of Numerical Experiments
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• External data is artificially generated

• Direct control over distributions

Artificial experiments

• Most popular UCI classification datasets

• External data via synthetic data generation

UCI experiments

• Digit recognition (e.g., 3 vs 9)

• External data is digits of high school students

MNIST experiments
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MNIST Experiments
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Our DRO models
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Adversarially robust optimization



MNIST Experiments

22

Adversarially robust optimization (over its mixture with external data)



Thank you for listening!

Personal Webpage



Future Work

• Different loss functions


• Intersection of more balls


• Comparison of different relaxation techniques


• Specialised algorithms for  norms in the feature-label metric


• Derive your own algorithm instead of using MOSEK


• Ball around  directly

ℓ1, ℓ2, ℓ∞

ℚmix
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Key Lemma for Tractability

 is convex with ,  and . Then:L(z) lip(L) = 1 ω, a ∈ ℝn λ > 0

= {L(a⊤ω) if ∥ω∥q⋆ ≤ λ
+∞ otherwise .

sup
x∈ℝn

{L(ω⊤x)−λ∥a − x∥q}
Convex fn. 
in ω

Convex 
constraint on ω
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sup
x∈ℝn

{L(ω⊤x)−λ∥a − x∥q − ̂λ ∥ ̂a − x∥q}

=: g(ω)

We have  constraints of type 𝒪(N ⋅ ̂N ) g(ω) ≤ constant
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Key Reason for non-tractability
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Minimax theorem 
not applicable



Non-tractability of Inter-ARO

Key Reason for non-tractability

 is convex with ,  and . Then:L(z) lip(L) = 1 ω, a, ̂a ∈ ℝn λ, ̂λ > 0

sup
x∈ℝn

{L(ω⊤x)−λ∥a − x∥q − ̂λ ∥ ̂a − x∥q}

= sup
θ∈dom(L⋆)

− L⋆(θ)+θ ⋅ ω⊤a+

inf
z∈ℝn

{θ ⋅ z⊤( ̂a − a) : |θ| ⋅ ∥ω − z∥q⋆ ≤ λ, |θ| ⋅ ∥z∥q⋆ ≤ ̂λ }

Can be viewed as an adjustable RO constraint

∀θ

∃z
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Case 2: Simultaneous
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Case 2: Simultaneous
Big assumption!

What can be done beyond cross-validation? 
1. Uber vs Lyft (Taskesen et al, 2021) 
2. Opt-out data with differential privacy (Ullman and Vadhan, 2020) 
3. Wasserstein GANs comes with guarantees on W(ℙN, ̂ℙ )


